Home Press Room Press Releases
The Dawn of a New Era for Supernova 1987A
Friday, 24 February 2017

Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following its discovery on Feb. 23, 1987.

Since that first sighting, SN 1987A has continued to fascinate astronomers with its spectacular light show. Located in the nearby Large Magellanic Cloud, it is the nearest supernova explosion observed in hundreds of years and the best opportunity yet for astronomers to study the phases before, during, and after the death of a star.

To commemorate the 30th anniversary of SN 1987A, new images, time-lapse movies, a data-based animation based on work led by Salvatore Orlando at INAF-Osservatorio Astronomico di Palermo, Italy, and a three-dimensional model are being released. By combining data from NASA’s Hubble Space Telescope and Chandra X-ray Observatory, as well as the international Atacama Large Millimeter/submillimeter Array (ALMA), astronomers – and the public – can explore SN 1987A like never before.

Hubble has repeatedly observed SN 1987A since 1990, accumulating hundreds of images, and Chandra began observing SN 1987A shortly after its deployment in 1999. ALMA, a powerful array of 66 antennas, has been gathering high-resolution millimeter and submillimeter data on SN 1987A since its inception.

Image

Astronomers combined observations from three different observatories to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A. The red color shows newly formed dust in the center of the supernova remnant, taken at submillimeter wavelengths by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile. The green and blue hues reveal where the expanding shock wave from the exploded star is colliding with a ring of material around the supernova. The green represents the glow of visible light, captured by NASA's Hubble Space Telescope. The blue color reveals the hottest gas and is based on data from NASA's Chandra X-ray Observatory. The ring was initially made to glow by the flash of light from the original explosion. Over subsequent years the ring material has brightened considerably as the explosion's shock wave slams into it. Supernova 1987A resides 163,000 light-years away in the Large Magellanic Cloud, where a firestorm of star birth is taking place. The ALMA, Hubble, and Chandra images at the bottom of the graphic were used to make up the multiwavelength view. Image Credit: NASA, ESA, and A. Angelich (NRAO); Hubble Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation); Chandra Credit: NASA/CXC/Penn State/K. Frank et al.; ALMA Credit: ALMA (ESO/NAOJ/NRAO) and R. Indebetouw (NRAO/AUI/NSF) | Download image

“The 30 years’ worth of observations of SN 1987A are important because they provide insight into the last stages of stellar evolution,” said Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and the Gordon and Betty Moore Foundation in Palo Alto, Calif.

The latest data from these powerful telescopes indicate that SN 1987A has passed an important threshold. The supernova shock wave is moving beyond the dense ring of gas produced late in the life of the pre-supernova star when a fast outflow or wind from the star collided with a slower wind generated in an earlier red giant phase of the star’s evolution. What lies beyond the ring is poorly known at present, and depends on the details of the evolution of the star when it was a red giant.

This scientific visualization illustrates the evolution of Supernova 1987A from the initial swelling of the host star and supernova explosion to the expanding shock wave and the formation of molecules detected by ALMA in the remnant. Credit. A. Angelich (NRAO/AUI/NSF)

Astronomer Remy Indebetouw talks about the star that exploded in 1987, and how the world's telescopes have been watching the explosion ever since. Additional animation and video credits: A. Angelich and B. Saxton, NRAO/AUI/NSF; R. Indebetouw et al., A. Angelich (NRAO/AUI/NSF); NASA/STScI/CfA/R. Kirshner; NASA/CXC/SAO/PSU/D. Burrows et al.; ESO; NASA/CXC/D.Berry/MIT/T.Delaney et al.; NASA/Goddard Space Flight Center Conceptual Image Lab; ESO/C. Malin/B. Tafreshi/José Francisco Salgado. Music: Geodesium.

“The details of this transition will give astronomers a better understanding of the life of the doomed star, and how it ended,” said Kari Frank of Penn State University who led the latest Chandra study of SN 1987A.

Image

Astronomers combined observations from three different observatories to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A. The red color shows newly formed dust in the center of the supernova remnant, taken at submillimeter wavelengths by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile. The green and blue hues reveal where the expanding shock wave from the exploded star is colliding with a ring of material around the supernova. The green represents the glow of visible light, captured by NASA's Hubble Space Telescope. The blue color reveals the hottest gas and is based on data from NASA's Chandra X-ray Observatory. The ring was initially made to glow by the flash of light from the original explosion. Over subsequent years the ring material has brightened considerably as the explosion's shock wave slams into it. Supernova 1987A resides 163,000 light-years away in the Large Magellanic Cloud, where a firestorm of star birth is taking place. The ALMA, Hubble, and Chandra images at the bottom of the graphic were used to make up the multiwavelength view. Image Credit: NASA, ESA, and A. Angelich (NRAO); Hubble Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation); Chandra Credit: NASA/CXC/Penn State/K. Frank et al.; ALMA Credit: ALMA (ESO/NAOJ/NRAO) and R. Indebetouw (NRAO/AUI/NSF) | Download image

Supernovas such as SN 1987A can stir up the surrounding gas and trigger the formation of new stars and planets. The gas from which these stars and planets form will be enriched with elements such as carbon, nitrogen, oxygen, and iron, which are the basic components of all known life. These elements are forged inside the pre-supernova star and during the supernova explosion itself, and then dispersed into their host galaxy by expanding supernova remnants. Continued studies of SN 1987A should give unique insight into the early stages of this dispersal.

Image

This is an image of the intricate remains of Supernova 1987A taken in submillimeter wavelengths by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile. The red color shows newly formed dust in the center of the supernova remnant. Image Credit: NASA, ESA, and A. Angelich (NRAO); ALMA Credit: ALMA (ESO/NAOJ/NRAO) and R. Indebetouw (NRAO/AUI/NSF) | Download image

"A supernova remnant cools quickly, so within a few years the heavy elements formed in the star can form molecules and condense into dust, turning the remnant into a veritable dust factory,” said Remy Indebetouw of the National Radio Astronomy Observatory in Charlottesville, Va. "ALMA is now able to see this newly formed dust directly, and ongoing studies will help us understand how it forms and how supernovas seed interstellar space with the raw material for new planetary systems."

Some highlights from studies involving these telescopes include:

• Hubble studies have revealed that the dense ring of gas around the supernova is glowing in optical light, and has a diameter of about a light-year. The ring was there at least 20,000 years before the star exploded. A flash of ultraviolet light from the explosion energized the gas in the ring, making it glow for decades.

• The central structure visible inside the ring in the Hubble image has now grown to roughly half a light-year across. Most noticeable are two blobs of debris in the center of the supernova remnant racing away from each other at roughly 20 million miles an hour.

• From 1999 until 2013, Chandra data showed an expanding ring of X-ray emission that had been steadily getting brighter. The blast wave from the original explosion has been bursting through and heating the ring of gas surrounding the supernova, producing X-ray emission.

• In the past few years, the ring has stopped getting brighter in X-rays. From about February 2013 until the last Chandra observation analyzed in September 2015 the total amount of low-energy X-rays has remained constant. Also, the bottom left part of the ring has started to fade. These changes provide evidence that the explosion’s blast wave has moved beyond the ring into a region with less dense gas. This represents the end of an era for SN 1987A.

• Beginning in 2012, astronomers used ALMA to observe the glowing remains of the supernova, studying how the remnant is actually forging vast amounts of new dust from the new elements created in the progenitor star. A portion of this dust will make its way into interstellar space and may become the building blocks of future stars and planets in another system. These observations also suggest that dust in the early universe likely formed from similar supernova explosions.

• Astronomers also are still looking for evidence of a black hole or a neutron star left behind by the blast. They observed a flash of neutrinos from the star just as it erupted. This detection makes astronomers quite certain a compact object formed as the center of the star collapsed – either a neutron star or a black hole – but no telescope has uncovered any evidence for one yet.

Additional images, illustrations, and animations are found here: http://hubblesite.org/news_release/news/2017-08.

Additional information

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

These latest visuals were made possible by combining several sources of information including simulations by Salvatore Orlando and collaborators that appear in this paper: https://arxiv.org/abs/1508.02275. The Chandra study by Frank et al. can be found online at http://lanl.arxiv.org/abs/1608.02160. Recent ALMA results on SN 87A are available at https://arxiv.org/abs/1312.4086



Contacts

Nicolás Lira T.
Press Coordinator
Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 24 67 65 19
Cell: +56 9 94 45 77 26
Email: nicolas.lira@alma.cl

Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
Charlottesville, Virginia, USA
Tel: +1 434 296 0314
Cell: +1 202 236 6324
E-mail: cblue@nrao.edu

Richard Hook
Public Information Officer, ESO

Garching bei München, Germany

Tel: +49 89 3200 6655

Cell: +49 151 1537 3591
Email: rhook@eso.org

Masaaki Hiramatsu

Education and Public Outreach Officer, NAOJ Chile
Observatory
Tokyo, Japan

Tel: +81 422 34 3630

E-mail: hiramatsu.masaaki@nao.ac.jp