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ABSTRACT

We present an 8 pc × 5 pc resolution view of the central ∼ 200 pc region of the nearby starburst galaxy NGC
253, based on ALMA Band 7 (λ ≃ 0.85 mm or ν ∼ 350 GHz) observations covering 11 GHz. We resolve the nuclear

starburst of NGC 253 into eight dusty star-forming clumps, 10 pc in scale, for the first time. These clumps, each of
which contains (4–10) ×104 M⊙ of dust (assuming that the dust temperature is 25 K) and up to 6 × 102 massive
(O5V) stars, appear to be aligned in two parallel ridges, while they have been blended in previous studies. Despite the

similarities in sizes and dust masses of these clumps, their line spectra vary drastically from clump to clump although
they are separated by only ∼ 10 pc. Specifically, one of the clumps, Clump 1, exhibits line confusion-limited spectra
with at least 36 emission lines from 19 molecules (including CH3OH, HNCO, H2CO, CH3CCH, H2CS, and H3O

+) and

a hydrogen recombination line (H26α), while much fewer kinds of molecular lines are detected in some other clumps
where fragile species, such as complex organic molecules and HNCO, completely disappear from their spectra. We
demonstrate the existence of hot molecular gas (Trot(SO2) = 90± 11 K) in the former clump, which suggests that the

hot and chemically rich environments are localized within a 10-pc scale star-forming clump.
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1. INTRODUCTION

The study of molecular gas in starburst galaxies is es-
sential to understand the diversity of star-formation ac-
tivities because we can learn the physical properties of

molecular gas experiencing an enhanced star-formation
rate compared to those in the Milky Way. Millime-
ter/submillimeter (mm/submm) spectroscopic diagnos-

tics are particularly important because intense star-
bursts are often deeply dust-enshrouded, especially in
their early phase where limited information is available

at other wavelengths. Previous mm/submm spectral
scans of local starburst galaxies (e.g., Mart́ın et al. 2006;
Aladro et al. 2011; Mart́ın et al. 2011; Costagliola et al.

2015) have demonstrated the richness of the molecular
emission lines. Spatially resolved spectral line surveys
are performed toward a limited number of representative

galaxies such as NGC 253 (Meier et al. 2015), NGC 1068
(Takano et al. 2014; Nakajima et al. 2015), NGC 1097
(Mart́ın et al. 2015), IC 342 (Meier & Turner 2005), and

Maffei 2 (Meier & Turner 2012). However, their spatial
resolutions (∼ 30–100 pc) are still not sufficient to re-
solve the individual star-forming regions inside the giant

molecular clouds (GMCs).
High spatial resolution spectroscopic observations are

essential to disentangle the multiple physical and chemi-

cal processes in the molecular clouds; a typical time scale
for the chemical evolution of the molecular medium is
approximately 106 yrs (e.g., Lee et al. 1996), whereas

the sound crossing time scale for a GMC is approxi-
mately 107 yrs (Watanabe et al. 2016). Therefore, if
we observe the GMC-scale molecular properties, it will

provide an integrated view across the molecular clouds,
which is expected to contain multiple components in
chemically different stages. To resolve the chemical di-

versity of molecular clouds, or namely, to discern their
evolutionary stages of star-formation with a high time
resolution, the spatially-resolved spectroscopy at clump

scales (or smaller) is highly necessary (e.g., Suzuki et al.
1992; Sakai et al. 2010; Sakai et al. 2012). Its impor-
tance is in fact demonstrated by the recent observa-

tions of ST11, a high-mass young stellar object (YSO)
in the Large Magellanic Cloud (LMC), yielding the first
extragalactic detection of a hot molecular core, one of

the early phases of the massive star-formation process
(Shimonishi et al. 2016).
Here, we present an 8 pc × 5 pc resolution view

of the central ∼ 200 pc region of the nearby star-
burst galaxy NGC 253, based on Atacama Large Mil-
limeter/Submillimeter Array (ALMA) Band 7 obser-

vations. NGC 253 is one of the nearest prototypical
starburst galaxies (e.g. Rieke et al. 1980); active star-
formation in its central region with the star-formation

rate of a few M⊙ yr−1 (e.g. Radovich et al. 2001) is sus-
tained by a large amount of interstellar medium (e.g.,

Sakamoto et al. 2011).
Throughout the paper, the distance to NGC 253 is

adopted to be 3.5 Mpc (Rekola et al. 2005), where 1′′

corresponds to 17 pc.

2. OBSERVATIONS AND ANALYSES

We obtain the 340–365 GHz (λ ≃ 0.85 mm) spectra
covering a total frequency range of 11 GHz, compiling
the results of two projects in the ALMA Cycle 2 ob-

servations, 2013.1.00735.S (PI: Nakanishi, hereafter Set-
I) and 2013.1.00099.S (PI: Mangum, hereafter Set-II).
The field of view of ALMA at these wavelengths is 16′′–

17′′. The Set-I observations cover the frequency range of
340.2–343.4 GHz and 352.5–355.7 GHz, and the Set-II
observes 350.6–352.4 GHz and 362.2–365.2 GHz. These

observations were conducted using 34–36 12-m antennas
with the baseline lengths of 13–784 m (Set-I) and 20–
615 m (Set-II). The uncertainty of the flux calibration

in ALMA Band 7 observations is ∼ 10% according to
the ALMA Cycle 2 Proposer’s Guide.
Data reduction is conducted with Common Astron-

omy Software Applications (CASA; Mcmullin et al.
2007), versions 4.2.1 and 4.2.2. Using its task clean,
we image the central region of NGC 253 with Briggs

weighting (with a robust parameter of 0.5). We set
the same clean parameters for the analysis of both
datasets to create uniform images over all the frequency

ranges. While we use the data of all uv lengths for each
dataset, the synthesized beam size of the final images
is convolved to 0′′.45× 0′′.3, which corresponds to 8 pc

× 5 pc at the distance to NGC 253. With the velocity
resolution of 5.0 km s−1, the rms noise levels are 1.0
and 2.4 mJy beam−1 for Set-I and Set-II, respectively.

The continuum map is presented in Figure 1 (a), and
it is created in the following manner. Firstly, we create
continuum maps by selecting the channels where no or

little line emission appears to exist for four frequency
ranges (the upper and lower sidebands of Set-I and Set-
II observations, respectively). Then we take an average

weighted according to the widths of the included spec-
tral ranges in the four continuum maps for the purpose
of improving the signal-to-noise ratio (S/N). However,

there are some difficulties to define the common line-
free channels over the image, since there are a lot of
molecular lines with slightly different central velocities

on the spectra of different positions. Therefore, the con-
tinuum map above is mostly accurate but not perfect.
Because of this shift in velocities among different po-

sitions, the continuum map created on the image may
contain ∼ 30% uncertainty compared to the continuum



4 Ando et al.

determined on the spectra, which is explained in Section
3.1. The CS(7–6) line integrated intensity map shown

in Figure 1 (b) is created by subtracting the continuum
map from the original data cubes on the image-plane.
Although the CS(7–6) line does not have strong neigh-

boring lines, which enables us to make its integrated
intensity map, it is difficult for us to create robust maps
for other major lines, which have strong adjacent lines

around.

3. RESULTS

3.1. Resolved image of the central region of NGC 253

Figure 1 shows the 0.85 mm continuum map and the
CS(7–6) line integrated intensity map. As shown in Fig-

ure 1 (a), the center of NGC 253 is resolved into 10-pc
scale star-forming clumps for the first time. We iden-
tified eight continuum peaks, which are named Clumps

1–8. All these clumps are approximately 10 pc in size.
Sakamoto et al. (2011) identified five peaks in their 1.3
mm continuum map with 20 pc (1′′.1) resolution. One

of the peaks, peak 3, is resolved into four clumps in our
continuum map (Clumps 2–5; see Figure 1 (a)), and it
turns out that those have totally diverse spectral fea-

tures (see Section 3.2). In Figure 1 (b), several CS(2–
1) peaks (Meier et al. 2015) are seen. In contrast, our
CS(7–6) map, which achieves more than three times bet-

ter angular resolution than that of CS(2–1), resolves the
peaks into smaller molecular clumps.
We obtain the continuum-subtracted spectra for

Clumps 1–8, as shown in Figure 2. The continuum
subtraction from the originally-obtained spectra is con-
ducted as follows. For the four frequency ranges, we

measure the continuum intensity of each clump by tak-
ing the mean of the values at line-free channels. The
number of the channels we use to define the continua

ranges from 81 out of 560 (the lower sideband of Set-I
at Clump 1) to 302 out of 560 (the upper sideband of
Set-I at Clump 5). These channels are located over

the whole frequency range we analyze; some are taken
from just several channels at the narrow valleys between
emission lines, which are placed at intervals of typically

∼ 0.2 GHz. Differing the channels for respective clumps
enables us to precisely determine the continuum level
for each clump. Then we subtract the continua from

the spectra of Clumps 1–8 for the four spectral ranges,
which results in the continuum-subtracted spectra of
eight clumps shown in Figure 2. Because the entire

profiles of the high intensity lines cannot fit in Figure 2,
they are shown in Figure 3.
In terms of the spatial distributions of the clumps,

Clumps 1–4 and 5–8 are aligned in two parallel ridges
(hereafter Ridge-N and Ridge-S), respectively. These

ridges are approximately 5 pc apart in the projected
distance. As shown in Figure 3, the line peak velocity

increases on each ridge, from the northeast to the south-
west, which is likely to correspond to the orbital motion
around the galactic center. We consider that the galactic

center is located at TH02 (R.A.(J2000) = 0h47m33s.2,
Dec.(J2000) = −25◦17′16′′.9; Turner & Ho 1985), the
brightest centimeter-wave continuum source of thermal

emission. The spectra in Clump 3 exhibit a double ve-
locity component; it is possible that the high and low-
velocity components are due to the contributions from

Ridge-N and Ridge-S, respectively. There appear to be
double-peak features of self-absorption in the profiles
of presumably optically thick HCN and HNC lines at

Clump 8, while such features are absent in those of op-
tically thin lines such as SO and HNCO.

3.2. Drastic difference of spectral features among 10-pc
scale star-forming clumps

In the spectra of the continuum-selected Clumps
1–8, we identify 37 lines originating from 19 molecu-

lar and one atomic species, including several tentative
identifications. The line identification is conducted by
comparing the spectra we obtained with the molecular

line database Splatalogue1, which mainly contains data
from the Cologne Database for Molecular Spectroscopy
(Müller et al. 2005) and the Jet Propulsion Laboratory

catalogues (Pickett et al. 1998). We also refer to the
results of the line surveys toward Galactic star-forming
regions with similar frequency ranges (Sutton et al.

1991; Helmich & van Dishoeck 1997; Schilke et al. 1997;
Nagy et al. 2015). We identify the lines by preferen-
tially choosing the molecules and their transitions that

are previously detected in local star-forming regions.
How well the lines are separated in each clump is de-
termined mainly by its line widths, not by the instru-

mental resolution. Although further observations in
different frequency ranges and the comparison with the
other transitions of the detected lines are needed for the

definitive line identification, we conduct the best iden-
tification by eye that could be done with the current
data.

Surprisingly, the molecular line appearances and in-
tensities drastically differ from clump to clump, even
though they are each separated by approximately 10

pc in projection (Figure 2). Although the contin-
uum intensities vary by at most ∼ 3 times among the
clumps, the variety of the apparent patterns of their

spectra is more prominent than the difference of the
S/N. Clump 1 exhibits line confusion-limited spectra

1 http://www.splatalogue.net/
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Figure 2. Spectra of the eight star-forming clumps we identify. Tentative identifications are labeled in italics. The molecules
whose names are written in red and green are ones whose line profiles are shown in Figure 3 and ones known to be easily
dissociated by ultraviolet radiation (see Section 4.1), respectively. The lines of CH3OH(130,13–121,12, A

+) and HNCO(161,15–
151,14), which are easily-dissociated molecules and whose spectra are presented in Figure 3, are indicated by black arrows. It is
probable that NO(2Π1/2, J = 7/2–5/2, F = 9/2–7/2) line is blended with CH3OH(40–3−1, E) line and HC3N(40–39) line with
CH3OH(72–61, E) line. The rms noise levels are 1.0 mJy beam−1 for Set-I (340.2–343.4 GHz and 352.5–355.7 GHz) and 2.4
mJy beam−1 for Set-II (350.6–352.4 GHz and 362.2–365.2 GHz), which are too small to be illustrated in the figure above.
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Figure 3. Velocity profiles of molecular and recombination lines in Clumps 1–8. Yellow shaded regions are the velocity ranges
we use in deriving the integrated intensity of each clump. Emission features outside the ranges above are the lines of different
species, except for the low-velocity component in Clump 3.



8 Ando et al.
T
a
b
le

1
.
E
m
is
si
o
n
p
a
ra
m
et
er
s
o
f
th
e
ei
g
h
t
st
a
r-
fo
rm

in
g
cl
u
m
p
s.

C
lu
m
p

1
2

3
4

5
6

7
8

P
ea
k
p
o
si
ti
o
n

R
.A

.(
0
h
4
7
m
)

3
3
s
.3
0

3
3
s
.1
6

3
3
s
.2
0

3
3
s
.1
1

3
3
s
.1
2

3
2
s
.9
9

3
2
s
.9
4

3
2
s
.8
4

(J
2
0
0
0
)

D
ec
.(
−
2
5
◦
1
7
′ )

1
5
′′
.6

1
7
′′
.2

1
6
′′
.7

1
7
′′
.7

1
8
′′
.2

1
9
′′
.7

2
0
′′
.2

2
1
′′
.2

S
iz
ea

(p
c)

8
.8

×
6
.0

1
0
.5

×
6
.0

1
1
.2

×
8
.0

8
.3

×
5
.3

9
.9

×
7
.6

9
.2

×
5
.8

9
.3

×
5
.7

1
5
.0

×
8
.6

V
el
o
ci
ty

ra
n
g
eb

(k
m

s−
1
)

1
3
5
–
2
5
5

1
9
5
–
3
0
0

2
2
0
–
3
2
5

2
7
0
–
3
4
0

9
0
–
2
2
0

1
6
0
–
2
7
0

2
1
5
–
3
1
0

2
3
0
–
3
5
0

H
C
N
(4
–
3
)

2
3
.4
0
±

0
.0
6

8
.3
4
±

0
.0
7

6
.3
8
±

0
.0
3

9
.0
3
±

0
.0
3

7
.9
4
±

0
.0
5

1
9
.3
2
±

0
.0
6

6
.8
3
±

0
.0
4

8
.1
7
±

0
.0
5

H
N
C
(4
–
3
)

2
3
.7
3
±

0
.0
8

6
.0
9
±

0
.2
0

3
.8
3
±

0
.1
3

6
.9
5
±

0
.1
3

7
.3
7
±

0
.1
2

2
0
.0
1
±

0
.0
8

4
.8
5
±

0
.1
1

3
.5
3
±

0
.1
4

C
S
(7
–
6
)

1
5
.2
0
±

0
.0
9

4
.5
5
±

0
.0
4

2
.0
1
±

0
.0
3

3
.4
0
±

0
.0
4

2
.6
5
±

0
.0
2

9
.2
5
±

0
.0
3

2
.3
3
±

0
.0
3

2
.9
9
±

0
.0
6

H
3
O

+
(3

+ 2
–
2
− 2
)

4
.5
0
±

0
.3
1

2
.0
1
±

0
.1
3

0
.6
4
±

0
.0
8

0
.9
3
±

0
.1
3

1
.5
1
±

0
.1
1

2
.5
7
±

0
.2
1

1
.8
9
±

0
.1
0

0
.9
0
±

0
.1
1

In
te
g
ra
te
d
in
te
n
si
ty

c
H
2
6
α

0
.6
6
±

0
.0
8

0
.2
9
±

0
.0
5

0
.4
0
±

0
.0
2

0
.2
4
±

0
.0
4

0
.6
8
±

0
.0
3

0
.6
2
±

0
.0
3

0
.2
5
±

0
.0
3

<
0
.0
9

(J
y
b
ea
m

−
1
k
m

s−
1
)

H
N
C
(4
–
3
)
v 2

=
1
f

5
.4
9
±

0
.1
4

1
.4
6
±

0
.1
3

<
0
.1
9

0
.9
7
±

0
.0
7

<
0
.2
7

1
.7
1
±

0
.1
4

<
0
.2
2

<
0
.3
3

S
O
(7

8
–
6
7
)

6
.3
5
±

0
.0
8

1
.6
4
±

0
.1
2

0
.4
7
±

0
.0
5

1
.3
1
±

0
.1
1

0
.4
1
±

0
.0
3

2
.6
2
±

0
.1
2

0
.6
2
±

0
.0
5

0
.9
4
±

0
.0
7

S
O

2
(5

3
,3
–
4
2
,2
)

1
.0
3
±

0
.0
7

0
.5
2
±

0
.0
5

<
0
.1
4

0
.2
6
±

0
.0
4

<
0
.1
5

0
.3
0
±

0
.0
5

0
.3
3
±

0
.0
4

0
.4
7
±

0
.0
6

C
H

3
O
H
(1
3
0
,1
3
–
1
2
1
,1
2
,
A

+
)

2
.0
1
±

0
.0
8

0
.6
6
±

0
.0
4

<
0
.0
7

0
.3
7
±

0
.0
2

<
0
.0
8

0
.6
5
±

0
.0
5

0
.2
8
±

0
.0
2

0
.2
5
±

0
.0
3

H
N
C
O
(1
6
1
,1
5
–
1
5
1
,1
4
)

1
.2
6
±

0
.0
4

0
.3
1
±

0
.0
2

<
0
.0
6

0
.1
9
±

0
.0
2

<
0
.0
9

0
.2
5
±

0
.0
3

0
.2
4
±

0
.0
2

0
.3
7
±

0
.0
3

F
W

H
M

o
f
C
S
(7
–
6
)
li
n
e
(k
m

s−
1
)

4
6
±

1
5
4
±

2
4
3
±

1
3
6
±

1
4
1
±

1
4
7
±

1
4
3
±

2
5
6
±

1

C
o
n
ti
n
u
u
m

in
te
n
si
ty

a
t
th
e
p
ea
k
d
(m

J
y
b
ea
m

−
1
)

8
1
±

2
4
7
±

2
4
6
±

2
4
0
±

2
2
6
±

2
6
1
±

2
3
8
±

2
3
0
±

2

C
o
n
ti
n
u
u
m

fl
u
x
d
en

si
ty

ov
er

th
e
cl
u
m
p
si
ze

d
(m

J
y
)

1
0
6
±

3
7
1
±

3
9
2
±

2
3
7
±

2
4
9
±

2
7
0
±

2
4
2
±

2
1
0
2
±

4

M
d
u
st

e
(M

⊙
)

1
×

1
0
5

7
×

1
0
4

9
×

1
0
4

4
×

1
0
4

5
×

1
0
4

7
×

1
0
4

4
×

1
0
4

1
×

1
0
5

N
u
m
b
er

o
f
O
5
V

st
a
rs

f
6
×

1
0
2

3
×

1
0
2

4
×

1
0
2

2
×

1
0
2

6
×

1
0
2

6
×

1
0
2

2
×

1
0
2

<
8
×

1
0
1

a
C
lu
m
p
si
ze
s
(F

W
H
M
)
a
re

d
et
er
m
in
ed

b
y
th
e
2
-d
im

en
si
o
n
a
l
G
a
u
ss
ia
n
fi
tt
in
g
o
f
th
e
co
n
ti
n
u
u
m

m
a
p
.
A
lt
h
o
u
g
h
th
e
u
n
ce
rt
a
in
ti
es

o
f
th
e
fi
tt
in
g
a
re

a
b
o
u
t
1
%

o
f
th
e

si
ze
s,

th
e
si
ze
s
a
b
ov

e
a
re

ju
st

ro
u
g
h
es
ti
m
a
te
s,

si
n
ce

it
is

in
p
ri
n
ci
p
le

d
iffi

cu
lt

to
cl
ea
rl
y
d
efi

n
e
th
e
em

it
ti
n
g
re
g
io
n
o
f
ea
ch

cl
u
m
p
.

b
L
in
e
L
S
R

v
el
o
ci
ty

ra
n
g
es

w
e
u
se

in
in
te
g
ra
ti
n
g
th
e
co
n
ti
n
u
u
m
-s
u
b
tr
a
ct
ed

sp
ec
tr
a
sh
ow

n
in

F
ig
u
re

3
.
N
o
te

th
a
t
w
e
in
te
g
ra
te

o
n
ly

th
e
h
ig
h
-v
el
o
ci
ty

co
m
p
o
n
en

t
(o
ri
g
in
a
te
d
fr
o
m

R
id
g
e-
N
)
in

C
lu
m
p
3
,
co
n
si
d
er
in
g
th
e
li
n
e
p
ro
fi
le

o
f
H
2
6
α
,
w
h
il
e
th
e
in
te
g
ra
ti
o
n
is

co
n
d
u
ct
ed

ov
er

th
e
li
n
e
p
ro
fi
le
s
in

th
e
o
th
er

cl
u
m
p
s,

in
cl
u
d
in
g

C
lu
m
p
s
1
a
n
d
8
,
w
h
er
e
th
e
fe
a
tu
re
s
o
f
se
lf
-a
b
so
rp
ti
o
n
a
p
p
ea
r
to

ex
is
t.

c
W
e
in
te
g
ra
te

th
e
li
n
es

sp
a
ti
a
ll
y
ov

er
th
e
b
ea
m

a
t
th
e
co
n
ti
n
u
u
m

p
ea
k
p
o
si
ti
o
n
s,

a
n
d
sp

ec
tr
a
ll
y
ov

er
th
e
v
el
o
ci
ty

ra
n
g
es

a
b
ov

e.
E
rr
o
rs

a
re

d
er
iv
ed

o
n
ly

fr
o
m

th
e

rm
s
n
o
is
e
le
v
el
s
o
f
co
n
ti
n
u
u
m

ch
a
n
n
el
s,

w
h
ic
h
a
re

lo
ca
te
d
o
n
o
n
e
o
r
b
o
th

si
d
es

o
f
ea
ch

li
n
e
p
ro
fi
le

o
n
th
e
sp

ec
tr
a
.
N
o
te

th
a
t
th
e
in
te
g
ra
te
d
in
te
n
si
ti
es

o
f
H
2
6
α

li
n
es

h
av

e
p
o
te
n
ti
a
ll
y
la
rg
e
u
n
ce
rt
a
in
ti
es
,
si
n
ce

th
e
H
2
6
α

li
n
es

p
o
ss
ib
ly

h
av

e
n
o
n
-i
d
en

ti
ca
l
p
ro
fi
le
s
to

o
th
er

m
o
le
cu

la
r
li
n
es

to
so
m
e
ex
te
n
t
a
n
d
w
e
ca
n
n
o
t
ex
cl
u
d
e

th
e
p
o
ss
ib
il
it
y
th
a
t
th
ey

a
re

b
le
n
d
ed

w
it
h
m
in
o
r
n
ei
g
h
b
o
ri
n
g
m
o
le
cu

la
r
li
n
es
.
F
o
r
n
o
n
-d
et
ec
te
d
li
n
es
,
th
e
3
σ
u
p
p
er

li
m
it
s
o
f
th
e
in
te
g
ra
te
d
in
te
n
si
ti
es

a
re

sh
ow

n
.

d
W
e
d
er
iv
e
b
o
th

th
e
co
n
ti
n
u
u
m

in
te
n
si
ti
es

ov
er

th
e
b
ea
m

a
t
th
e
p
ea
k
p
o
si
ti
o
n
s
a
n
d
th
e
co
n
ti
n
u
u
m

fl
u
x
d
en

si
ty

ov
er

th
e
cl
u
m
p
si
ze
s,

ea
ch

o
f
w
h
ic
h
is

av
er
a
g
ed

ov
er

o
u
r
1
1
G
H
z
b
a
n
d
.

e
A
s
d
u
st

m
a
ss
es

a
re

ca
lc
u
la
te
d
fr
o
m

th
e
co
n
ti
n
u
u
m

fl
u
x
d
en

si
ti
es

ov
er

th
e
cl
u
m
p
si
ze
s,

th
ei
r
er
ro
rs

d
u
e
to

th
e
S
/
N

a
re

a
b
o
u
t
se
v
er
a
l
p
er
ce
n
ts

a
n
d
th
er
ef
o
re

n
eg
li
g
ib
le

w
h
en

th
e
m
a
ss
es

a
re

ro
u
n
d
ed

to
o
n
e
si
g
n
ifi
ca
n
t
n
u
m
b
er
.
N
o
te

th
a
t
th
e
va

lu
es

a
re

ro
u
g
h
es
ti
m
a
te
,
si
n
ce

th
e
d
u
st

co
n
ti
n
u
u
m

fl
u
x
es

m
ig
h
t
va

ry
b
y
a
t
m
o
st

∼
3
0
%

ov
er

th
e
fr
eq
u
en

cy
ra
n
g
e
w
e
a
n
a
ly
ze
,
a
n
d
th
e
co
n
ti
n
u
u
m

em
is
si
o
n
is

a
ss
u
m
ed

to
b
e
p
u
re
ly

co
m
p
o
se
d
o
f
th
e
d
u
st

th
er
m
a
l
em

is
si
o
n
.

f
T
h
e
n
u
m
b
er
s
o
f
O
5
V

st
a
rs

a
re

ju
st

ro
u
g
h
es
ti
m
a
te
s
to

co
m
p
a
re

ea
ch

cl
u
m
p
to

o
th
er
,
si
n
ce

th
ey

a
re

d
er
iv
ed

fr
o
m

th
e
H
2
6
α

in
te
g
ra
te
d
in
te
n
si
ti
es
,
w
h
ic
h
co
n
ta
in

p
o
te
n
ti
a
ll
y
la
rg
e
u
n
ce
rt
a
in
ti
es

(s
ee

N
o
te

c)
.
T
h
e
n
u
m
b
er
s
o
f
O
5
V

st
a
rs

d
ec
re
a
se

to
o
n
e-
th
ir
d
o
f
th
e
va

lu
es

sh
ow

n
a
b
ov

e,
if
w
e
a
d
o
p
t
th
e
va

lu
e
o
f
N

L
g
iv
en

b
y

P
a
n
a
g
ia

(1
9
7
3
)
in
st
ea
d
o
f
th
a
t
g
iv
en

b
y
M
a
rt
in
s
et

a
l.
(2
0
0
5
).



Ten-pc scale diverse star-formation in the heart of NGC 253 9

with many lines of various molecular species, while a
much smaller number of molecular lines are detected

in Clumps 3 and 5. Clumps 2, 4, 6, 7, and 8 ap-
pear to be classified as an intermediate-type; their
spectra do not reach the line confusion-limit, while a

larger number of molecules are detected therein than
in Clumps 3 and 5. Now we resolve and distinguish
the individual features of the 10-pc scale star-forming

clumps in an extragalactic source, which have been
blended and averaged over several tens-of-parsecs in
scale in previous studies (e.g., Sakamoto et al. 2011;

Meier et al. 2015). Although the chemical diversities
over parsec scales have been reported in Galactic sources
such as Sgr B2 (e.g., Sutton et al. 1991) and W3 (e.g.,

Helmich & van Dishoeck 1997), our work resolves the
diverse nature outside the Local Group for the first time.
detailed discussions about the chemical variety of the

clumps based on the their line ratios are given in Sec-
tion 4.1.

3.3. Line profiles and emission parameters

Line profiles of nine major molecular lines and hy-
drogen recombination line H26α are shown in Figure 3.

Table 1 summarizes the integrated intensities of these
ten lines and the continuum intensities of Clumps 1–8.
We integrate the line emission spatially over the beam

at the continuum peak positions, and spectrally over the
velocity ranges we set for respective clumps, because of
the following reason. As the spectra are close to be

line confusion-limited, it is virtually impossible to set
the common velocity ranges to integrate the molecular
lines concerned without blending the neighboring ones.

Therefore, we set the different frequency ranges for each
clump, over which we spectrally integrate the lines, in-
stead of creating the integrated intensity maps for every

molecular line with the same velocity ranges. If an in-
tegrated intensity map of a certain line is created with
the particular frequency range that covers the whole line

profile at all the clumps, for example, 90–350 km s−1, it
is inevitable that different lines are blended at some of
the clumps and the integrated intensity of the line con-

cerned are overestimated. Since we cannot determine
the line emitting regions robustly without integrated in-
tensity maps, we spatially integrate the lines over the

beam as point sources at the continuum peak positions,
so that we can directly compare the integrated intensity
of a clump with those of other ones.

We do not fit the lines with Gaussian profiles, since
their unsymmetrical profiles and the existence of a lot
of their neighboring lines prevent the precise Gaussian

fitting. Since the rms errors of the integrated intensities
shown in Table 1 arise only from S/N of the lines, there

may be larger uncertainties especially for the lines such
as H26α with profiles far apart from Gaussian. These

values should be directly compared, since we adjust the
way integrate the lines for all the species and clumps,
despite the possible uncertainties of the integrated in-

tensities.
The dust masses (Mdust) of the clumps are calculated

from the continuum flux density with the following stan-

dard equation:

Mdust =
SνD

2

κνBν(Tdust)
(1)

(e.g., Klaas et al. 2001; Krips et al. 2016), where Sν is
the flux observed at frequency ν, D is the distance to

the source, κν is the mass absorption coefficient, and
Bν(Tdust) is the Planck function at frequency ν and dust
temperature Tdust. Here, we adopt the averaged contin-

uum flux density over the clump size as Sν , ν = 353
GHz (weighted averaged value of the whole frequency
range analyzed), D = 3.5 Mpc (Rekola et al. 2005), and

κν = 0.0865 m2 kg−1 at ν = 353 GHz (Klaas et al.
2001). Krips et al. (2016) derived the dust tempera-
ture for the NGC 253 disk: Tdust = 25 K. We adopt

this value, although Mdust decreases by a factor of 20
when Tdust varies from 10 K to 100 K. Note that the
derived values of dust masses are rough estimates, be-

cause the dust continuum fluxes might vary by ∼ 30%
when the value at the lower edge of the frequency range
is compared to that at the upper edge. Nevertheless, the

relative comparison of the masses among the clumps is
more reliable, since the procedure to derive the masses
is common among the clumps.

Although here we assume that the dust thermal emis-
sion comprises all of the continuum emission, we ac-
tually find minor contribution from free-free emission.

The contribution could account for up to 20% of 353
GHz continuum flux density, which is estimated by ex-
trapolating the 99 GHz free-free flux density given by

Bendo et al. (2015). Note that, however, this estimate
is just an upper-limit, since the observations conducted
by Bendo et al. (2015) covered the emission from larger

spatial scale than we do, as the minimum baseline length
of their observations (7.0kλ; Bendo et al. 2015) is half
as long as that of ours (15.3kλ). Although the estimate

of dust masses of the clumps presented in Table 1 needs
to be slightly reduced, the correction up to 20% does
not affect the comparison of the scales of the clumps.

The number of O5V stars of each clump is derived
from its integrated intensity of the H26α line. We as-
sume all the ionizing photons arise from a single stel-

lar population (O5V) and they are perfectly absorbed
by ambient neutral hydrogen. H26α integrated intensi-
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ties are converted into Lyman continuum photon fluxes
(s−1) in the following manner. We estimate the equiva-

lent Hβ flux from the observed H26α flux by using the
line ratio presented in Hummer & Storey (1987). Then,
Lyman continuum photon number is calculated by using

the Hβ flux the recombination coefficients presented by
Osterbrock (1989). We assume that the electron den-
sity and temperature of ionized gas are 103 cm−3 and

104 K, respectively (Nakanishi et al. in preparation),
and Case B condition (Osterbrock 1989). The numbers
of O5V stars in individual clumps are obtained by divid-

ing the Lyman continuum photon fluxes by the Lyman
continuum photon flux per single O5V star (NL). We
adopt logNL = 49.26 given by Martins et al. (2005).

The number of O5V stars decrease to one-third of the
values shown in Table 1 if we adopt the theoretical value
logNL = 49.71 given by Panagia (1973), which has little

influence upon the following discussions.
The integrated intensity ratios of the ten representa-

tive lines to continuum are summarized in Table 2. We

derive the ratios by dividing the the integrated inten-
sities of the lines shown in Table 1 by the integrated
continuum intensities, which are continuum intensities

at the eight peak positions (see Table 1) spectrally inte-
grated over the same velocity ranges as those used when
integrating the lines for each clump. The integrated in-

tensity ratios of the three lines (CH3OH(130,13–121,12,
A+), HNCO(161,15–151,14), and HNC(4–3) v2 = 1f) to
continuum are illustrated in Figure 4.

4. DISCUSSION

4.1. Physical similarity and chemical diversity of
star-forming clumps

The features of the molecular line spectra are notably
different from clump to clump, despite their physical

similarity; the sizes and line width of the clumps vary
only by twice. Although the variations of their dust
masses and the number of O5V stars are relatively large

(five times or less), they are surpassed by their distin-
guishing chemical diversity.
The most striking chemical difference between clumps

is the number of detected molecules. As shown in Figure
2, Clump 1 exhibits line confusion-limited spectra where
their continua are not easily identified, while much fewer

kinds of molecular lines are detected in Clumps 3 and
5. In the latter clumps, molecular lines as a whole
seem to be suppressed, which is obvious even when com-

pared to the clumps which have similar continuum in-
tensities, such as Clump 8. Especially, HNCO lines
(HNCO(160,16–150,15) and HNCO(161,15–151,14)) and

CH3OH lines (CH3OH(71–61, A
−) and CH3OH(130,13–

121,12, A
+)) completely disappear from the spectra of

Figure 4. Integrated intensity ratios of CH3OH(130,13–
121,12, A+), HNCO(161,15–151,14), and the HNC vibra-
tionally excited line (J = 4–3, v2 = 1f) to continuum for
Clumps 1–8. For non-detected lines, the 3σ upper limits of
the ratios are shown with blue arrows.

Clump 5, while they are clearly detected in Clump 8.

The integrated intensity ratio of HNCO(161,15–151,14)
to continuum, presented in Table 2 and Figure 4, is
(0.10± 0.01)× 10−3 in Clump 8, while it falls to below

0.03 × 10−3 in Clump 5. As HNCO tends to be disso-
ciated by ultraviolet (UV) photons (e.g., Mart́ın et al.
2008; Mart́ın et al. 2009b), it is probable that HNCO

is destroyed by strong UV radiation from massive stars,
particularly in Clump 5, which is the one with the high-
est number of O5V stars. Other clumps than Clumps

3 and 5, however, can harbor shielded regions where
HNCO can survive in comparably intense UV radiation.
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CH3OH also appears to be suppressed in Clumps
3 and 5; for example, the integrated intensity ra-

tio of CH3OH(130,13–121,12, A+) to continuum in
Clump 5 is less than 0.02 × 10−3, while it takes
(0.07±0.01)×10−3 even in comparably-bright Clump 8,

and it takes as high as (0.21± 0.01)× 10−3 in Clump 1.
CH3OH, one of the complex organic molecules (COMs;
Herbst & van Dishoeck 2009), is also easily dissociated

by cosmic rays and UV photons (Mart́ın et al. 2006;
Mart́ın et al. 2009b; Aladro et al. 2013). This addition-
ally supports the fact that some shielding mechanisms

work in Clump 1 and others except Clumps 3 and 5.
Furthermore, CH3COOH, an even larger COM tenta-
tively identified in Clump 1, also disappears in Clumps

3 and 5. The suppression of molecular lines, especially
those of ones easily dissociated by UV photons, suggests
that Clumps 3 and 5 are filled with HII regions with

hundreds of O-type stars.
Note that, however, there are some other scenarios

accounting for the suppression of HNCO and COMs.

One possibility is that such molecules have not pro-
duced on dust grains yet, or at least have not sub-
limed into gas-phase. This scenario is consistent with

that sulfur-bearing species such as SO and SO2 are also
suppressed in Clumps 3 and 5, since the formation of
such sulfur-bearing species is largely determined during

the phase when atomic sulfur freezes out on dust grains
(Wakelam et al. 2004). Another scenario that can ex-
plain the molecular gas suppression is that the fraction

of line-emitting cores are relatively low in Clumps 3 and
5. We cannot resolve a single star-forming core with
the current observations, and it is possible that the lines

from the molecules prone to concentrate around the core
instead of existing over ambient diffuse gases are diluted
over a 10-pc scale beam. HNCO, SO, and SO2 seem to

tend to distribute compactly around a star-forming core
(e.g. Nagy et al. 2015).
Previous studies have found the specific spatial distri-

butions of HNCO and/or CH3OH gases inside nearby
galaxies (e.g. Meier & Turner 2005; Meier & Turner
2012; Mart́ın et al. 2015; Saito et al. 2017; Ueda et al.

2017; Tosaki et al. 2017), and the distribution of warm
molecular gases in NGC 253 is also investigated (e.g.
Ott et al. 2005; Krips et al. 2016; Gorski et al. 2017).

Nevertheless, the spatial resolution of these observations
are limited to ∼ 30–100 pc, and the drastic chemical di-
versity among even smaller 10-pc scale clumps has not

been unveiled until this work.
The distribution of the HNC vibrationally excited line

(J = 4–3, v2 = 1f) emission is also noticeable. We de-
tect the line in Clumps 1, 2, 4, and 6, which is remark-

able in that it is for the first time that the vibrationally

excited line of HNC is detected in NGC 253. This is
the third detection in external galaxies after the ones

in the AGN-hosting luminous infrared galaxies NGC
4418 (Costagliola et al. 2013; Costagliola et al. 2015)
and IRAS 20551–4250 (Imanishi et al. 2016). While the

vibrationally excited line is absent in Clumps 3, 5, 7,
and 8, its emission is outstandingly enhanced in Clump
1; the intensity ratio of the vibrationally excited line

to the continuum is (0.56 ± 0.02) × 10−3 in Clump 1,
which is much higher than those in the other clumps
(< 0.35 × 10−3). The HNC molecule, which absorbs

mid-infrared photons with a wavelength of λ = 21.5 µm
and an energy level of hν/k = 669 K, decays back to
its ground state after being pumped up to its bending

vibrational mode (infrared pumping; Aalto et al. 2007).
The enhancement of the HNC vibrationally excited line
in Clump 1 suggests the existence of mid-infrared ra-

diation sources and that active infrared pumping takes
place therein. However, the HNC vibrationally excited
line intensity does not simply correlate with the Q-

band (λ = 18.72 µm) continuum intensity presented by
Fernández-Ontiveros et al. (2009); Q-band emission ap-
pears to be brighter around Clump 6 than that around

Clump 1, where the HNC vibrationally excited line in-
tensity is largest among the clumps. We might have to
consider not only infrared pumping but also some other

mechanisms as the reason for the prominent emission of
the vibrationally excited line in Clump 1.
We consider that the internal velocity field does not

dominantly affect the apparent spectral features and the
line ratios. The line widths of the molecular lines have
little variance (by 1.6 times at most) among the clumps

(see Table 1). Although there seem to be no prominent
difference of spectral features in most of the line pro-
files presented in Figure 3, some of the clumps exhibit

complex line profiles, which could be attributed to the
spatial structures of molecular gases therein. For ex-
ample, Clump 1 appears to have wing-like line profile,

which possibly imply that Clump 1 is more extended in
projection and along the line-of-sight spatially. Never-
theless, the contribution from the wing-like part to the

total line flux is just limited (e.g. 14% in its CS in-
tegrated intensity). In addition, there seem to be no
distinct correlation between the line FWHM presented

in Table 1 and the integrated intensity ratios shown in
Table 2. Therefore, the variance of the line ratios among
the clumps is mainly attributed to their chemical vari-

ety.

4.2. The localization of hot molecular gases and

chemically rich environment
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Figure 5. Rotation diagram of SO2 for Clumps 1, 2, and 6.

Some of the eight star-forming clumps, especially
Clump 1, exhibits chemically rich spectra. Molecular
line emission as a whole is enhanced in the clumps, and

we detect enhanced lines of HNCO, COMs, and vibra-
tionally excited HNC. They also contain rarer and com-
plex species such as H2CS, CH3CCH, and CH3COOH.

The survival of HNCO and COMs suggests not only
that such clumps harbor some shielded regions, but also
that they are dense molecular gas regions in the early

evolutionary phase of star-formation, just after such
molecules are produced on dust grains and sublimed into
the gas-phase.

For the purpose of investigating the origin of such
chemically rich spectra, we perform the rotation dia-
gram analysis (Blake et al. 1987) for SO2 to estimate

molecular gas temperature. SO2 is utilized as a tracer of

warm and dense molecular gas around high-mass YSOs
(Beuther et al. 2009). We detect three transitions of

SO2 in Clumps 1, 2, and 6, where SO2 lines are suffi-
ciently bright for the analysis and comparably various
molecules are detected. All of the three transitions have

similar velocity profiles and source sizes. The rotation
diagram is shown in Figure 5, suggesting that the rota-
tion temperature Trot(SO2) = 90±11 K and the column

density Ntotal(SO2) = (7.3±1.0)×1016 cm−2 for Clump
1. Trot(SO2) in Clumps 2 and 6 are also derived to be
similarly high (∼ 80 K).

Our results are consistent with those of previous stud-
ies below in that the existence of the hot molecular gas
in the heart of NGC 253 is suggested. Previous ob-

servations of NH3 gas in NGC 253 have demonstrated
the high temperature environments in its central re-
gion. Mauersberger et al. (2003) have conducted sin-

gle dish observations with the spatial resolution of 40′′

(corresponding to 680 pc), and have shown that two
velocity components have the rotation temperatures of

142 K and 100 K, respectively. Interferometric observa-
tions with the resolution of 6′′ (corresponding to 100 pc)
have suggested that the molecular gas within the cen-

tral kpc of NGC 253 could be best described by a two
kinetic temperature model with 130 K and 57 K com-
ponent (Gorski et al. 2017). In addition to supporting

these previous studies, we also reveal that hot molecu-
lar gases (∼ 100 K) are localized in a 10-pc scale star-
forming clump, and this is strongly suggesting that high

molecular temperature plays a major role in bringing
the chemically rich environment. The connection be-
tween the hot environment and the chemical richness

and their localization within a 10-pc scale clump cannot
be disclosed without several-parsec-resolution observa-
tions such as our ALMA ones.

Clump 1 is having the brightest and the most
chemically rich spectra among the eight star-forming
clumps. Here, in order to interpret the environment

of Clump 1 described above, we propose a hypothe-
sis that Clump 1 is a giant hot core cluster, which is
a several-parsec-scale aggregate of hot molecular cores

(Kobulnicky & Johnson 2001) where high-mass star-
formation takes place. Hot molecular cores are defined
with the following characteristics: small source size

(≤ 0.1 pc), high density (≥ 106 cm−3), and warm
gas and dust temperatures (≥ 100 K) (Kurtz et al.
2000; van der Tak et al. 2003; Shimonishi et al. 2016).

Owing to the lack of angular resolution of conven-
tional radio telescopes, the observational studies of
hot molecular cores were limited to Galactic sources,
until Shimonishi et al. (2016) detected the first extra-

galactic hot core in the LMC with ALMA. The re-
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sults of our analysis, which suggest the existence of
the hot molecular gases and the chemically rich envi-

ronment in Clump 1, are consistent with the hypoth-
esis. Typical hot molecular cores exhibit somewhat
higher temperature environments: Trot(SO2) is 124 K

in Orion KL (Schilke et al. 1997), 184 K in W3(H2O)
(Helmich & van Dishoeck 1997), and 190 K in ST11 in
the LMC (Shimonishi et al. 2016). However, these hot

gas components are distributed just over typical hot
core sizes (≤ 0.1 pc). In contrast, Clump 1 in NGC 253
harbors hot molecular gas (∼ 100 K) spreading over 10-

pc scale. This result is remarkable because it suggests
that a hot environment entirely dominates Clump 1,
and it is consistent with the picture that Clump 1 is a

giant and rich cluster of hot molecular cores. Clumps 2
and 6, which are comparably hot to Clump 1 and in the
most chemically-rich environments after it, could also

be interpreted as giant hot core clusters.
Note that, however, we cannot resolve molecular cores

surrounding single protostars in NGC 253, nor estimate

the density and dust temperature of Clump 1 even with
ALMA; it is just a hypothesis and we do not exclude
other possibilities such as that Clump 1 is a large pho-

todissociation region (PDR). However, it might be less
likely that Clump 1 is a PDR, since SO2 tend to be
easily dissociated in a PDR (e.g. Fuente et al. 2003;

Ginard et al. 2012). Further observations will make it
clear which picture can explain what takes place in
Clump 1. In particular, wider frequency observations

of the heart of NGC 253 with comparably high angular
resolution will enable us to determine the dust temper-
ature therein and to make robust identifications of the

lines of COMs.

This work demonstrates the prominent capability of
ALMA; it can resolve 10-pc scale star-forming clumps

in external galaxies and bring their chemical diversity
to light. Future ALMA observations of nearby star-
burst galaxies with high spatial resolution will lead us

to get a closer look into the chemical diversity of star-
burst regions and to obtain a further understanding of
which formation processes and evolutionary stages such

regions trace in galaxies.
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