Background SMG sample Water in high-z SMGs Multi-J CO lines High-resoluti
00000 000 000 000000

esolution Summa 000 00 Backup 000000000000000

Physical conditions of the ISM in high-redshift lensed submillimeter galaxies

杨辰涛 (YANG, Chentao)

Collaborators: Alain Omont, Alexandre Beelen, Raphael Gavazzi, Yu Gao, Pierre Cox, Eduardo González-Alfonso, Roberto Neri & *Herschel*-ATLAS team

JAO, The ALMA Quest for Our Cosmic Origins, 27-March-2018.

The history of cosmic star formation

- Cosmic star formation history (CSFH) peaking around redshift ~2-3
- The galaxies gain most of their masses around this epoch.
- Infrared-luminous galaxies are crucial for studying the galaxy growth history, especially around the CSFH peak.

 Background
 SMG sample
 Water in high-z SMGs
 Multi-J CO lines
 High-resolution
 Summary
 Backup

 0●000
 000
 000
 000
 000
 000
 000
 000

 Probing the physical conditions of the ISM in SMGs
 Summary
 Summary
 Summary
 Summary
 Summary

The discovery of submillimeter galaxies

- Submillimeter galaxies (SMGs) usually having $L_{\rm IR} \gtrsim 10^{12} L_{\odot}$.
- The negative K-correction magically makes the detections easy to achieve.
- SMGs are believed to be the progenitors of today's most massive galaxies.

What's the nature of SMGs (DSFG)? \rightarrow Study their star formation. \rightarrow Observing the ISM.

Why study the CO lines?

CO is the most important gas tracer:

- CO is the most abundant molecule after H₂, lines are the brightest
- Redshift search for dusty galaxies at high-*z*
- CO(1-0) traces the bulk of total molecular gas (H₂ mass, α_{CO})
- Kennicutt–Schmidt law: observationally, theoretically
- CO excitation: physical properties of the molecular gas
- Kinematics: rotation, merger, in/out-flow, etc.

The new powerful diagnostic tool: submm H_2O lines

e.g., in Arp220: González-Alfonso et al. 2011; APM08279: van der Werf et al 2011; Lis et al 2011

 $H_2O:$ a powerful diagnostic tool :

- A very different tracer from CO
- IR-pumping dominated $(J \ge 2)$
- High-J and low-J H₂O lines are comparable.
- Warm compact (far-IR-pumping) + cool extended (collision)
- Generally, H₂O lines diagnostic tells:
 - Molecular gas properties: e.g., column density of H₂O
 - FIR radiation field (dust) properties: e.g., *T*_{warm}, dust opacity, size, ...

How to observe the submillimeter rotational H_2O lines?

- In our Galaxy and in nearby galaxies: very hard to observe from ground
 - Space telescopes: e.g., Odin, SWAS , ISO, Spitzer, Herschel
- In high-redshift galaxies: shifted into atmospheric windows, but very weak
 - Extremely powerful telescope with a lot of integration time!
 - With moderate observing time, through gravitational lensing: picking up sources from lensing surveys: e.g., *Herschel*-ATLAS, SPT and *Planck* all-sky surveys.

Finding the strongly lensed SMGs via submm surveys

Strongly lensed SMGs discovered by Herschel-ATLAS

Optical and submm images of the sample

(Bussmann et al 2013; Harris et al 2012)

 L_{H_2O} vs L_{IR} from local ULIRGs to the high-redshift SMGs 21/23 in 17 SMGs, largest high-z H₂O study: Omont, Yang et al. 2013; Yang et al. 2016

 $(E_{upper} = 137 \text{ K})$ 1.16 ± 0.13 $L_{\rm H_{2}O(2_{11}-2_{02})} \sim L_{\rm IR}$ 100 $L_{\rm H_{2}O}(10^7 L_{\odot})$ G15v2.779 APM08279 HLSJ0918 NAv1.144 NCv1.268 G09v1.124-W 10 G09v1.40 GN9v1 97 G09v1 124-T Local -SDP9 NCv1_1 3000 ULIRGs NAv1.56 Mrk231 10 100 $L_{\rm IP} (10^{12} L_{\odot})$

$$\begin{split} & L_{\rm H_2O(2_{02}-1_{11})}^{\rm (E_{\rm opper}=101\,\rm K)} \sim L_{\rm IR}^{1.06\pm0.19} \\ & L_{\rm H_2O(2_{02}-1_{12})}^{\rm (E_{\rm opper}=305\,\rm K)} \sim L_{\rm IR}^{1.06\pm0.22} \end{split}$$

- $L_{\rm IR} \propto L_{\rm H_{2}O}$ can be explained by the IR-pumping model
- The H₂O lines are good tracer of the IR radiation sources that connect to star formation (no mid-IR/radio AGN signature)

Submm H₂O lines in high-redshift lensed SMGs

00

Background

Modelling the H_2O line excitation in high-z SMGs

Multi-J CO lines

Pure IR-pumping H₂O excitation model of González-Alfonso et al. 2014

Water in high-z SMGs

In 5 of the sources, we have both $J=2 \& J=3 H_2O$ detections:

Backup

- Assuming pure H₂O IR-pumping model;
- The H₂O column density is similar to local infrared galaxies;
- The H₂O line excitation is mainly powered by dust with temperature around 45–75 K;
- Strong degeneracies: J≥4 H₂O lines are needed for better constraints of the model.

Going back to the standard gas tracer: A large sample of multiple-J CO study in $z\sim$ 2–4 SMGs

 Background
 SMG sample
 Water in high-z SMGs
 Multi-J CO lines
 High-resolution
 Summary
 Backup

 0000
 000
 000
 000
 000
 000
 000
 000

 Molecular gas in SMGs as probed by multi-J CO lines
 s
 s
 s
 s
 s

IRAM-30m observations of multi-J CO lines

Newly detected 47 multiple-J CO and 7 CI lines in 15 SMGs. Yang et al. 2017

Radiative transfer modelling of the CO line excitations

RADEX (non-LTE) + emcee (MCMC with affine-invariant ensemble sampler) –a better flux recovery of the low-J CO lines from two-components fitting

What is regulating the star formation efficiency, pressure?

A way to understand the variation seen in the star formation law?

Background	SMG sample	Water in high-z SMGs	Multi-J CO lines	High-resolution	Summary	Backup	
00000	000	00		●000000	00	000000000000000	
High angular resolution images of the lensed SMGs							

Next step: From unresolved observations to high angular-resolution images of the molecular gas in strongly lensed SMGs

 Background
 SMG sample
 Water in high-z SMGs
 Multi-J CO lines
 High-resolution
 Summary
 Backup

 00000
 000
 00
 0000
 00000
 000000
 000000

High angular resolution images of the lensed SMGs

ALMA 0."4 images of H₂O, CO and dust continuum

The highest angular-resolution H₂O image (~3 kpc) at any redshift

Background SMG sample Water in high-z SMGs Multi-J CO lines High-resolution Summary Backup 00000 000 00 0000000000000 Mich angular resolution images of the lensed SMGs

ALMA integrated spectra of H_2O , CO and dust

Yang, Gavazzi, et al., in prep.

Lens modelling: MCMC using the CLEANed images

Yang, Gavazzi, et al., in prep.

Source plane image of dust, CO and H_2O

Yang, Gavazzi, et al., in prep.

Strikingly similar velocity strucutre between H₂O and CO

Instrinsic properties of the molecular line emission. Yang, Gavazzi, et al., in prep.

Kinematic structure - a close merging pair

Extended red + compact blue. Yang, Gavazzi, et al., in prep.

Background 00000	SMG sample	Water in high- <i>z</i> SMGs 00	Multi-J CO lines	High-resolution	Summary ●0	Backup 000000000000000000000000000000000000
summary						

Summary

Largest sample study of submm H_2O line and multiple-J CO line (CO SLED) study in high-redshift SMGs –

- H₂O is a powerful diagnostic tool for the infrared sources in the warm, dense regions linked to intense star formation. The lines are bright.
- $L_{\rm H_2O} \sim L_{\rm IR}^{1.1-1.2}$, correlating strongly with star formation.
- IR pumping plays an important role in the submm H₂O excitation and dominates the $J \ge 2$ H₂O excitation.
- Mid/high-J CO lines also tightly correlated with FIR luminosity.
- Gas pressure plays an important role in regulating star formation.
- Mid/high-J CO and similar spatial distribution and velocity structure as H₂O. Both located similarly as the warm dust continuum.
- Our *Herschel*-ATLAS lensed SMGs have similar properties as other SMGs samples around *z*~2-4.

Background 00000	SMG sample	Water in high- <i>z</i> SMGs 00	Multi-J CO lines 0000	High-resolution	Summary 0●	Backup 000000000000000000000000000000000000
summary						

Thank you for your attention! Questions?

Chentao Yang, 27-Mar-2018

How do we study a dusty (infrared) galaxy?

A first systematic study of H_2O in local infrared galaxies Yang et al., 2013

- First/largest systematic study of submm rotational H₂O emission lines in local galaxies; (Thanks to *Herschel* SPIRE/FTS!)
- The H_2O lines are among the strongest molecular lines, comparable with high-*J* CO, flux ratio of $H_2O/CO \sim 0.3$ to 1;

- Tight correlation of $L_{\rm H_{2O}} \propto L_{\rm IR}$: confirming the importance of IR-pumping.

H_2O detections in the *Herschel* high-z lensed SMGs

21/23 in 17 SMGs, largest high-z H₂O study: Omont, Yang et al. 2013; Yang et al. 2016

21/23 in 17 SMGs, 5 sources with both $J=2 \& J=3 H_2O$, Yang et al., 2016

H₂O Spectral Line Energy Distribution (SLED)

Exploring the H_2O excitation in Herschel high-redshift SMGs, Yang et al., 2016

Multi-J CO lines

 H_2O SLED normalized by 2_{02} - 1_{11} intensity:

- The ratio between H₂O(3₂₁-3₁₂) and H₂O(2₀₂-1₁₁) are within local range.
- Different flux ratios of line $H_2O(3_{21}-3_{12})$ over $H_2O(2_{02}-1_{11})$.
- Indicating various properties of infrared radiation fields.

Background

Observing the J = 4 H₂O lines using NOEMA/IRAM

Yang et al, in prep: $L_{IR}-L_{H_2O(4_{22}-4_{13})}$ correlation and the H_2O line excitation modeling

⁹ The detections following the similar scaling relation found in local (U)LIRGs

Background 00000	SMG sample 000	Water in high- <i>z</i> SMGs 00	Multi-J CO lines	High-resolution	Summary 00	Backup 000000000000000000000000000000000000

H_2O excitation modelling

Yang et al, in prep: Using the H₂O excitation model of González-Alfonso et al. 2014

Two components (warm + cold) are needed for the H₂O line modelling;

• ALMA will increase the sample size significantly!

$H_2O^+/H_2^{18}O$ emission is detected in high-redshift SMGs

Yang et al. 2016: shedding light on the oxygen chemistry

- $J=2 H_2O^+$ lines can be observed along with H_2O ;
- $J=2 H_2O^+$ lines are bright;
- Similar line profiles between $J=2 H_2O \& H_2O^+$;
- H₂O⁺/H₂O flux ratio ~ 0.3: cosmic rays may drive the oxygen chemistry (taking PDR+cosmic-ray model from *Meijerink et al. 2011*);

ound SMG sample Wat

Water in high-z 00 Multi-J CO lir

High-resolution

Summary B 00 0

Backup 000000000000000

IRAM-30m spectra of the CO and [CI] lines

 $[{\rm CI}](2\text{-}1)$ can be detected together with CO(7-6). Yang et al. 2017

Background	SMG sample	Water in high-z SMGs	Multi-J CO lines	High-resolution	Summary	Backup
00000	000	00	0000		00	000000000000000000000000000000000000

Differential lensing: linewidth under-estimation

Molecular gas in the SMGs as probed by multi-J CO lines

Background	SMG sample	Water in high-z SMGs	Multi-J CO lines	High-resolution	Summary	Backup
						000000000000000000000000000000000000000

Dynamics and molecular gas mass fraction

- Further evidence of linewidth underestimation.
- For the sources with little differential lensing: molecular gas mass fraction \sim 34%, agrees with model and other SMGs (M_{dyn} is very uncertainy though).

Correcting for differential lensing for the extended gas

Star formation in high-redshift SMGs

