Infant Galaxies Merging Near ‘Cosmic Dawn’
Press Releases

Infant Galaxies Merging Near ‘Cosmic Dawn’

21 November, 2013 / Read time: 5 minutes

Astronomers using the combined power of the Atacama Large Millimeter/submillimeter Array (ALMA) telescope and NASA’s Hubble Space Telescope have discovered a far-flung trio of primitive galaxies nestled inside an enormous blob of primordial gas nearly 13 billion light-years from Earth.

"This exceedingly rare triple system, seen when the Universe was only 800 million years old, provides important insights into the earliest stages of galaxy formation during a period known as ‘Cosmic Dawn,’ when the Universe was first bathed in starlight,"said Richard Ellis, the Steele Professor of Astronomy at the California Institute of Technology and member of the research team. "Even more interesting, these galaxies appear poised to merge into a single massive galaxy, which could eventually evolve into something akin to the Milky Way."

Researchers first detected this object, which appeared to be a giant bubble of hot, ionized gas, in 2009. Dubbed Himiko (after a legendary queen of ancient Japan), it is nearly 10 times larger than typical galaxies of that era and comparable in size to our own Milky Way. Subsequent observations with the Spitzer Space Telescope suggested that Himiko might represent a single galaxy, which would make it uncharacteristically massive for that period of the early Universe.

"The new observations revealed that, rather than a single galaxy, Himiko harbors three distinct, bright sources, whose intense star formation is heating and ionizing this giant cloud of gas," said Masami Ouchi, an associate professor at the University of Tokyo who led the international team of astronomers from Japan and the United States.

Areas of such furious star formation should be brimming with heavy elements such as carbon, silicon, and oxygen. These elements are forged in the nuclear furnaces of massive, short-lived stars like those bursting into life inside the three galaxies detected by Hubble. At the end of their relatively brief lives, these stars explode as supernovas, seeding the intergalactic medium with a fine dust of heavy elements.

"When this dust is heated by ultra-violet radiation from massive newborn stars, the dust then re-radiates at radio wavelengths that would be easily detected by ALMA," remarked Kotaro Kohno, a member of the team also with the University of Tokyo. "Such radiation, however, is not detected in Himiko."

"Surprisingly, observations with ALMA revealed a complete absence of the signal from carbon, which is rapidly synthesized in young stars. Given the sensitivity of ALMA, this is truly remarkable," said Ouchi. "Exactly how this intense activity can be reconciled with the primitive chemical composition of Himiko is quite puzzling."

The astronomers speculate that Himiko could be made up almost entirely primordial gas, a mixture of the light elements hydrogen and helium, which were created in the Big Bang. If correct, this would be a landmark discovery signaling the detection of a primordial galaxy seen during its formation.

Ellis summed up the situation: "Astronomers are usually excited when a signal from an object is detected. But, in this case, it’s the absence of a signal from heavy elements that is the most exciting result!"

The ALMA data were taken as part of the early science program with only a portion of the array’s eventual full complement of 66 antennas. Future research with the complete ALMA telescope and the next-generation of ground-and space-based observatories will look even further back in time, shedding more light on the origin and evolution of the first stars and galaxies. The results are accepted for  publication in the Astrophysical Journal.

More information

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Contact:

Valeria Foncea 
Education and Public Outreach Officer
Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 2467 6258
E-mail: [email protected] 

Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
Charlottesville, Virginia, USA
Tel: +1 434 296 0314
Cell: +1 434.242.9559
E-mail: [email protected] 

Masaaki Hiramatsu
 
Education and Public Outreach Officer, NAOJ Chile
Observatory
Tokyo, Japan
Tel: +81 422 34 3630
E-mail: [email protected]

Richard Hook 
Public Information Officer, ESO
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: [email protected]